
Superfields with internal symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1975 J. Phys. A: Math. Gen. 8 1298

(http://iopscience.iop.org/0305-4470/8/8/014)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/8/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A :  Math. Gen., Vol. 8, No. 8, 1975. Printed in Great Britain. Q 1975 

Superfields with intemal symmetry 

P H Dondi 
lnstitut fur Theoretische Physik. Universitlt Karlsruhe.75 Karlsruhe 1. Germany 

Received 10 February 1975 

Abstract. The generalization of superfields to include an internal SU(n) symmetry group 
is studied, and shown to be a simple extension of the original formulation of Ferrdra. Wess 
and Zumino. 

1. Introduction 

One of the more interesting, and perhaps physically significant extensions of the original 
Wess and Zumino (1974a, b) supersymmetry is to combine it with an internal symmetry 
group to obtain a new defining algebra (Salam and Strathdee 1974b, Dondi and 
Sohnius 1974). This can be effected by allowing the charges which generate the super- 
symmetry (and obey anticommutation relations rather than commutation relations) to 
become non-trivial representations of the internal symmetry group. 

By considering the algebra of these charges together with the generators of the 
Poincare group, it is possible to obtain representations of the combined supersymmetry 
and internal symmetry. In order to find these, Salam and Strathdee (1974b), Wess 
(1974) and Zumino (1974) have shown how to construct rest-frame representations in 
terms of massive particle states. Applying Lorentz boosts to these states gives basis 
vectors for the representations of the complete algebra. It  is also possible to approach 
the problem of supersymmetry representations by means of the superfield technique 
of Salam and Strathdee (1974a), and this has been demonstrated for the internal 
symmetry group SU(2) (Dondi and Sohnius 1974). The superfield can then be used to 
construct Lagrangian models invariant under the combined supersymmetry and internal 
SU(2) group (Wess 1974, Firth and Jenkins 1975, Dondi and Sohnius, unpublished, 
Capper and Leibbrandt 1975, Dondi and Wess, unpublished). 

Because the two symmetries are mixed non-trivially, the number of independent 
parameters on which the superfield depends increases with the dimension of the internal 
symmetry and the structure of the superfield becomes more and more complicated, as 
can easily be seen by glancing at Dondi and Sohnius (1974) and Ferrara et a1 (1974). 
The aim of this paper is to provide techniques which apply generally to SU(n) sym- 
metries and lead to relatively simple power series expansions for the superfields in 
terms of their ordinary field components. In Q 2, we redevelop the algebra and superfield 
transformations to include SU(n) as the internal symmetry group. The power series 
expansions of some simple superfields are considered in 6 3, and in Q 4 we discuss some 
specific examples of Lagrangian models with SU(2) symmetry to demonstrate the power 
of our methods. 
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2. The algebra and transformation laws 

The supersymmetry generators consist of the 2n component complex spinor Qh, trans- 
forming as a two-dimensional spinor representation of the Lorentz group (Greek index) 
and a basic n-dimensional representation of SU(n) (Latin index) together with its 
Hermitian conjugate Qhj .  The defining commutators can be written as 

[M,, , QL1 = - fioPJl’ Qb (14  

[ M  P V  ’ Q,I = +Q&JB& (W 
[ F P ,  Qhl = - ! d A p y k Q k a  ( 2 4  

[ F P ,  Q,I 3Qk.i(Ap)kj  (2b) 

sum over repeated indices 

where M,, are the Lorentz group generatorst, Fp generate the internal SU(n) symmetry 
group, the matrices A p  are the basic representation of SU(n), and opv and 6,, are two, 
two-dimensional matrix representations of the Lorentz group (see appendix). 

In order to simplify the following calculations, it is convenient to replace the SU(n) 
and SL(2, C) labels by SU(2n) indices. Thus, spinors are redefined in the following 
manner : 

whilst their Hermitian conjugates are 

ui 1 -  = u A  and U ;  uA 

E, fia and fiaj f iA 

and the usual rules of spinor analysis apply, such that contractions are made by sum- 
ming over dotted or undotted pairs of indices, one covariant and one contravariant. 

Then we can replace equations (1) and (2) by 

where we have also combined the matrix representation indices in the form 

( x p v ) A B  = 6 jk (opv ) ,8  

( q v Y A  = 6k&)8h 

( A P ) A B  = ( A P y k  6,’ 
( A p Y i  = ( A p ) k j  d B d .  

To complete the defining algebra we take the algebra of the Poincare group generators, 
M,, and P, together with the SU(n) algebra, and the remaining relations between the 
spinor charges and P, given by 

{Q”,  Q B )  = {Qa,  0s) = 0 

{ Q A ,  Qs) = 2(o,)”sPP (56) 
[p,, Q”1 = [p,, Qs1 = 0 

(54  

(6 )  
t The indices p, 1’ = 0. 1.  2, 3. and the metric is v , , ~  = diag(1, - 1, - 1 ,  - 1). 
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where 

b J / J A B  = 6’,(a,),s 

and the o,, are given in the appendix. 
The algebra thus defined is a generalization of the subalgebra originally introduced 

(Wess and Zumino 1974a, b, Salam and Strathdee 1974a, b) to allow massive particle 
theories to be developed. 

Continuing with the now accepted method (Salam and Strathdee 1974a, Ferrara 
et a1 1974), we introduce totally anticommuting parameters, which anticommute 
amongst themselves and also anticommute with all other spinorial quantities, including 
the QA and QA. With such a set 8, and p.  we can replace the anticommutators of 
equation ( 5 )  by the commutator algebra 

[OAQA, e,&”] = [ Q j B A ,  Q b p ]  = 0 ( 7 4  

[OAQA, Q@] = ~O,((T,)~~BEP’. (7b) 

In complete analogy with the work of Ferrara et a1 (1974), we can now define functions 
of the 8, ,p and x,, byt 

4(x, 8,B) = exp( - ixP + ieQ + iQB) ( 8 4  
41(x, 8,B) = exp(-ixP+iBQ)exp(iQ8) (8b) 
42(x, 0, B )  = exp( - ixP + iQ8) exp(i0Q) (8c) 

4(~, , ,  e, e) = &(x,, + ih$,  e, 6 )  = 42(~, ,  - ieo,e, e, 8). 
which are connected, using equations (6) and (7), by the shift operation 

(9) 

It is easy to see that multiplication from the left by an element of the form 

G = exp(iQij+iqQ) 

leads infinitesimally to the group action 

where qd, = qAd/dOA.  
The structure of the supersymmetry algebra and the transformations are obviously 

the same as in the case of no internal symmetry, and we can consider equations (9) and (10) 
to be basic properties of superfields (Ferrara et a1 1974). Furthermore, it is also easy to 
see that sets of covariant derivatives (ie derivative operators that commute with the 
variations of equation (10)) can be constructed and are of the same form as their simpler 
counterparts without internal symmetry ; the covariant derivatives are 

on 4 :  

t Henceforth we leave out the indices when the summations are obvious, ie 

X P  = x,P’, OQ = O,QA. 
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on 4 2 :  

The DA and D ~ A  obey the relations 

{DA, DE} = {D~A,  Bb} = 0 

and 
{ D A , B ~ )  = - 2i(o$adP 

or equivalently 

[ r A ~ A ,  DAgk]  = - 2 i 5 o J ~  (12c) 

using the anticommuting parameter tA  and its Hermitian conjugate. 
Thus, using this SU(2n) notation, the algebra, transformation laws and covariant 

derivatives can easily be written in forms completely equivalent to those of the original 
supersymmetry model. 

3. Superfields 

The superfield +(x, 8,8) can be expanded as  a finite power series in the anticommuting 
parameters 0 and 8, with coefficients which are ordinary fields depending on x, and 
being representations of SU(n) and the Lorentz group. In general, $(x, 6,8) is not irre- 
ducible and it is possible to impose constraints, using the covariant derivatives, which 
reduce the number of ordinary fields in the expansion. The simplest types of constraint 
are of the form DA$ = 0 which implies that 42 is independent of 0 and Dj~4 = 0 which 
gives independent of 8. We will concentrate on this type of superfield. 

Thus, the 4 1 ( x ,  e) can be expanded as 

where the [ABC . . . ] indicates total antisymmetry in these indices, and because of the 19 
independence we have no dotted indices to consider in this case. The beauty of combin- 
ing the SL(2, C) index with the SU(n) index is now even more apparent. We know not 
only that each term is an irreducible representation of SU(2n), but also that after the 
(n + 1) term, the SU(2n) representations that appear are simply the conjugates of those 
that come in the first n terms (a transparent way to see this is to consider the Young 
tableaux for the antisymmetric combinations of SU(2n) basic spinors). 

Remembering that in SU(n), we have at our disposal the totally antisymmetric 
- 1) - f 1 2 3 . . . n  - Levi-Civita tensors 8 ~ ~ z - ~ n  and f A I A 2 , . . A n  (both defined to have ~ 1 2 3 , . , ~  - 
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to raise or lower indices, we can rewrite our superfield as 

where we have explicitly rewritten the last few terms of the power series using the E 

tensor. This is always possible and leads again to a structure that is an obvious 
generalization of the Ferrara, Wess and Zumino superfield. As particular examples, we 
have, for the case of no internal symmetry 

$1(x, 6) = A(x)+ e,$”(x)+@A8BfABF(X) (154 

as given in Ferrara et a1 (1974). With SU(2) as the internal symmetry group, we find 
(Dondi and Sohnius 1974) 

1 1 1 
3 !  4! $I(x, 6) = A(x) + e,lC/”(x) + 6 A 8 B B ( A B 1 ( X )  +-6AeB6CcABCDAD(X) +-6,46B8C6DfABCDF(X) 

U5b) 
containing the SU(4) representations 

1 + 4  + 6 +4 +l. 
And finally, for SU(3), the superfield is 

1 1 
2! 3 !  

1 1 

4 l(x, e) = ~ ( x )  + e,$A(x) + - o A e B B I A B l ( X )  + - eaeBecv[ABCl(x )  

+ ~ d ~ 6 ~ 6 c 6 D C ~ ~ ~ ~ ~ ~ G  [EF](X) + F6A6B6,6DdEEABCDEFA F b )  

From equations (14) and (15), the general structure for any SU(n) symmetry is now 
clear, and the transformation properties of the ordinary fields which are the coefficients 
of 0 follow immediately by applying equation (lob) and equating products of 6 to obtain, 
for example from equation (14) 

6A(x) = I ] A $ A ( X )  

b $ A ( ~ )  = qBBIABl(~)+ 2i(a@A(x) 
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where 
= (c7, )Agd".  

The basis given in equation (14) for the expansion of 41(x, e)  is the most succinct 
way of presenting the superfield transformations. It keeps all the fields as irreducible 
representations of SU(2n) and treats the Lorentz group and SU(n) on the same footing. 
Of course, the SU(n) 0 Lorentz group content of the SU(2n) multiplets can easily be 
resurrected by general techniques of reduction. However, most manipulations such as 
multiplication of superfields of the same type, or shifting of superfields from one type to 
another, benefit from being done in the SU(2n) notation. 

Before giving examples of these manipulations, we should note a few further proper- 
ties of interest in later calculations. The product of 2n spinor components can be 
written as 

e A l e A 2 . .  * = EA1A2...A2,U (174 

where 

I A ~ A ~ . , . A ~ ~  
E A  eA2eA3 ' ' ' 

X A l  = ~ 

( 2 n -  l)! 

such that 

8 A X B  = 6 A B U .  

We see directly that for two sets of anticommuting parameters 6' and 6', 

u(e ) f ( e '  + e)  = u(e)j-(e') (18) 
where we have explicitly given the U as a function of 8, andf(8) is a function with a 
decomposition as given in equation (14). Now if we define a derivative operator 

d - a . . .  1 a a  
(2n)!EB1B2. . .B2n-  ___ - - - 

aeB2n - I a8,, - de(2n) 

we have 

thus 

Using equation (19), we find immediately that 
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Equations (18), (19) and (20) suggest a comparison of u(0) with a 6 function as has 
previously been noted by Fujikawa and Lang (1975) for the case n = 1. 

4. Superfield techniques in SU(2) and Lagrangian models 

For no internal symmetry, the superfield methods and several Lagrangian models have 
been thoroughly investigated (Fujikawa and Lang 1975, and references therein). The 
simplest extension to include SU(2) has several new features. Firstly, the superfield 
given in equation (15b) is not completely irreducible, and it is possible to find a further 
non-trivial constraint to limit the number of constituent fields (Wess 1974, Firth and 
Jenkins 1975, Dondi and Sohnius, unpublished). The new superfield can be used to 
construct invariant Lagrangian models for massless particles. 

Secondly, Lagrangian models with mass can be constructed (Capper and Leibbrandt 
1975, Dondi and Wess, unpublished), but are not trivial generalizations of those ob- 
tained in the simple case. Attempts to use the superfield of equation (1%) lead to a 
Lagrangian which is not manifestly free of ghosts, although Capper and Leibbrandt (1975) 
have shown by explicit calculation that ghosts do not appear. 

In this section, we use the results of the earlier sections to study the superfield reduc- 
tion for SU(2) as an internal symmetry group, and construct manifestly ghost-free 
Lagrangians. 

To consider the further constraint on the superfield given by equation (1 5b) we need 
explicit expressions for the Hermitian conjugate of 41(x, 0) and also the shift operation 
applied to dl(x, e). The Hermitian conjugate is given by 

4?(x, 8) = A +  +~ABA+)BB8AB;ABI--DXD+iiF+ (21) 

where we leave the x dependence of the ordinary fields implicit. This superfield is now 
a function of 8 only, with 

1 1 
3! 4! 

. .  
= -tAB&qqjqFJ it, = - - EbABeQABBBBC, 

and obeys the condition DA4 = 0. 
The shift operation of equation (9) leads to 

4 2 ( ~ , ,  e, 8) = ~$,(~,+2i00,,8, e, 8) = exp(2ie?N)+,(x, e) 

4 2 ( ~ ,  0,8) = [ l  +2i(&38)-2(ei38)2+8iO&+ 1602uii]4,(x, e) 

( @ A B  = (g,)QP = ( g , p Q i j p  

(22) 

which, expanding the exponential and using the properties of the t tensor, is just 

(23) 

where 

and 5, are given in the appendix. In the + 2  representation, we know from equation 
(1 IC) that d/aO, is a covariant derivative and we can apply the d/dO(4) to equation (23) to 
obtain a superfield depending only on 8: 
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where the arrow above ‘d in the second term implies that the derivative acts on the i. 
The superfield $l(x, 6) together with $:(x, 0) and &(x, 8) contain all the information 
we require to study the further reduction and the construction of Lagrangians. 

I t  is a consequence of the fact that 0 carries a dimensional weight, that if A has 
weight d, then $ has a weight d +$, and so on up to F which has weight d + 2 (or in general 
for SU(n) internal symmetry, F has weight d + n). If we now compare the two super- 
fields which we have constructed independent of 8, namely C$:(x, 8) from equation (21) 
and &(x, 8) from equation (24), we see that the first term of 6; has weight d whilst the 
first term of 4; has weight d+  2, and it is possible to use the d’alembertian to write an 
invariant constraint 

& = cod: ( 2 5 )  

where c is a constant. Then equating coefficients in the 8 expansion gives 

where 

B [ X  y] = $cXyABBIAB1. 

At this point, it is worthwhile replacing BLAB] by its components labelled with SU(2) 
and Lorentz group indices. An SU(4) antisymmetric tensor with two indices contains 
a spin-one isoscalar and a spin-zero isovector, thus 

BLAB] = Dp(7,g)iJcnB + $aPv(d‘vc)aBgiJ. (274 
The tensor structure is described in the appendix. D, is an isovector and a,” 
(,U, 1’ = 0, 1,2, 3) the spin-one isoscalar, which obeys a,,, = f , , , - ~ i ~ , , . ~ ~ . f ~ ~  with f,” a 
real antisymmetric Lorentz tensor (Dondi and Sohnius 1974). Equation (27a) implies 

and 

B&, = D,C(g~,)~~clj~ +$alv(cbP’)pdgji. (27c) 

ODp = -$COD: @a) 

(286) 

From equations (26a) and (26e) it is obvious that JcI = 4, and choosing the phase such 
that c = -4, to give simple expressions in equation (28), we find that solutions to equa- 
tions (26) and (28) which are consistent with the superfield transformations are : 

In terms of the fields D, and a rv r  we find that the constraint equation (26c) is 

and 
Z P ~  ~ P V -  2’3  PP + icP”PadKzpaKa = - +c-aP\”. 

P 
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and the number of constituent fields has been further reduced. 

general is given from equation (1 56) by 
I t  is now not difficult to see that the coefficient of U in the product +i(x, e), which in 

(30) 
d 
P~?(X, 0) = 2AF + 2$AA, + BI,BIBIAB1 

leads to an expression, when we use the constraint conditions of equation (29), which is 
an ideal candidate for a free massless Lagrangian, namely 

Y a -8AO,4’-4i@1)+2D~,- f p V f ” ’ .  (31) 

The integral of Y is thus an invariant action for a complex-scalar-isoscalar, a real- 
vector-isoscalar, and a Weyl-spinor-isospinor. D l P  (the real part of Dp) is an auxiliary 
field and does not propagate. As an alternative we see that the general expression 

d -41n+l = 2FOA-2A,01LA +BIABIOBIAB1+divergence terms 
de‘4’ ( 3 2 )  

leads, for a superfield obeying the further conditions of equation (29), to 

Y K - iFF’ + i A ~ ~ + 2 D l p 0 D , , + 2 ~ ,  fzBdPfp, (33) 
where F is now the auxiliary field, and the peculiar term in f+ in fact describes a mass- 
less scalar field?. Thus, we find that the possibility of applying the extra constraint of 
equation (29) leads to two free Lagrangians describing different sets of fields. A study 
of the rest-frame algebra shows that the simplest massive supermultiplet has more 
components than either of the multiplets described by the Lagrangians of equations (3 1) 
and (33) which are therefore inherently massless. 

To construct a massive Lagrangian we need the complete superfield of equation 
(156). However, in order to allow for the reduction just given, we redefine the super- 
field as 

(34) 4 1 ( ~ ,  e) = A + e A $ A  + + e A e s B I A B l  - xA(qA + 2i($bA)+ u ( F ’ + ~ ~ A  + I ,  

then setting F’ = 0, q, = 0 etc leads to a reduced multiplet. Further, the superfield 
given by 

(35) 
1 

4 0  
O R  = 41 --m+ 

which automatically satisfies the constraint equation (25)  is a reduced superfield inde- 
pendent of A and $”. Now, in order to find the free massive Lagrangian, we consider 
possible bilinear combinations of superfields, as was done in the simple model without 
internal symmetry, and find that both 

t We disagree with Firth and Jenkins (1975) over the particle content of the two Lagrangians given by equations 
(31) and ( 3 3 ) .  
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and 

have dimensional weight 4, when A has d = 0, and are thus candidates for ‘kinetic terms’, 
whilst 

is of dimension 2 and gives a ‘mass-like term’. In fact a suitable action is 

which in terms of the individual fields is 

A = d4x[(F’F’+ -2icpaip + 168,D1Pd~D1P- 168,f”B8Pf,B 

-4m2( 1 6 A O A ’  + 2 A F ‘ + 2 A +  F” + Si$81(/ - 2cp$ +2@$ 
s 

+ 4D:p - 4D:p - 2f,,f’”)]. (40 ) 

The F’ and D,, (the imaginary part of D p )  are auxiliary fields, while the particle content 
is: a scalar and pseudoscalar (real and imaginary parts of mA), an isovector (DIP), a 
vector (described by f,,) and a Dirac spinor-isospinor and its Hermitian conjugate 
(obtained by arranging the two Weyl spinor-isospinors as (;*)). Notice that the dimen- 
sional parameter m has been used to produce fields with canonical dimension. The 
redefinition of +l(x,O) according to equation (34) to take into account the possible 
further constraint of equation (29) has provided a proper set of fields to construct a 
Lagrangian as in equation (40), without higher derivatives, and we know immediately 
that there is no problem from ghost states. We are of course still left with the problem 
of introducing interactions, and it has been shown (Capper and Leibbrandt 1975) that 
the simple 4: interaction is non-renormalizable. In fact, because of the auxiliary D,, 
field that we are dealing essentially with a non-polynomial interaction. It remains to 
be seen if there are any renormalizable interactions when internal symmetry and super- 
symmetry are combined. 

Finally, using the correspondence between differentiation and integration mentioned 
in 0 3, we can write the action in the more aesthetic form : 

A = 1 d4x d40 d4&4 42 - 2 4  ( 0 + 2m2)4 S(@ - 2 4  ( 0 + 2m2)4 S(0)l 

where we have replaced d/d8(4’, d/d8(4), ii(8) and u(0) in equation (39) by d40, d48, S(0) 
and S(0) respectively which puts x,, 8 and 8 on the same footing. This is the basis of the 
functional approach to superfields, by which superfieid equations of motion and propa- 
gators etc can be obtained by functional differentiation of the action with respect to the 
superfields (Fujikawa and Lang 1975). 
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5. Conclusion 

The aim of this paper has been to describe a simple and compact way of generalizing the 
superfield techniques of supersymmetry to cases including SU(n) as an internal symmetry 
group. The construction of a Lagrangian model with SU(2) as the internal symmetry 
is dealt with in detail, and we have shown that it is necessary to take into account the 
possibility of further constraints, to give a set of fields for which a Lagrangian can be 
found, manifestly free of ghost states. The functional methods, which have been put to 
good use in the case of no internal symmetry, can also be used in this model. 

Although we have concentrated on a particular superfield independent of 8, we 
envisage no difficulty in using the SU(2n) notation for any type of superfield. 
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Appendix 

The notation we use for SL(2,C) is based on the Weyl formulation. The matrices 
(a&j = (1, a,), where 0, are the Pauli matrices, and (a,)"B (1, -ai). We define a 
two-dimensional c tensor 

which is different to the SU(n) c tensor used in the bulk of the formulation but allows for 
matrix notation to be used more conveniently. The two sets of a matrices are related 
by 

(@,)B. = -(CO&. 

The (awv) and (@,J are given in terms of these matrices by 

(a,,),B = +i(a,a, - a,,a,),B 
and 

(b,,)"b = ti(e,a, - a,o,)"b 

which can be considered simply as covariant rearrangements of the basic Pauli matrices. 
From these we can form symmetric and antisymmetric matrices ( o F v ~ ) a B  and cap with 
similar combinations for contravariant indices and dotted indices. 

and r Z B  respec- 
tively, and in SU(2) we have the symmetric and antisymmetric combinations ( g T p ) i j  

and gij and so on. Then the product of basic spinors can be projected out using com- 
binations of these objects to give expressions like equation (27). 

The SU(2) matrices g,, and g'j correspond to the two-dimensional 



Superjelds with internal symmetry 

References 

Capper D M and Leibbrandt G 1975 Nucl. P h y .  B 85 503 
Dondi P H and Sohnius M 1974 Nucl.  Phys. B 81 317 
Ferrara S, Wess J and Zumino B 1974 Phys. Lett. 51B 239 
Firth R J and Jenkins 1975 Nucl.  Phys.  B 85 5 2 5  
Fujikawa K and Lang W 1975 Nucl. Phys. B 88 61 
Salam A and Strathdee J 1974a Nucl.  Phys.  B 76 477 
~ 19741, Nucl. Phys. B 80 499 
Wess J 1974 Bonn Summer School Lectures, Karlsruhe Preprint 
Wess J and Zumino B 1974a Nucl. Phys. B 70 39 

~ 1974b Phys. Lett. 49B 52 
Zumino B 1974 Proc. 17th Int. Conf on High Energy Physics, C E R N  Preprint TH-1901 

1309 


